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For an animal to behave effectively in its environment, its ner-
vous system must encode information well enough to support 
interactions with the dynamic world in real time. In the mam-

malian visual system, it is clear that early levels of cortical motion 
processing take as primitives the dynamic patterns of stimulation 
that fall on the left and right retinae. Then subsequent decoding 
processes must allow the animal to interact with the dynamic, 
three-dimensional (3D) world. It is therefore not the retinal motion 
that is ultimately important, but rather inferring the 3D environ-
mental motion that gave rise to the retinal stimulation and subse-
quent cortical activity.

In some cases, the stimulation on the sensory epithelium is a 
fairly direct proxy for the stimulus in the environment. Some tac-
tile perception works this way (that is, if you feel a poke on your 
forearm, then something is poking your forearm). So too with a 
stimulus moving on a computer monitor: the mapping from moni-
tor position to retinal position is straightforward. However, for 
most vision, there is a many-to-one mapping of 3D world positions 
(and velocities) to retinal positions (and velocities). Therefore, for 
the visual system to work outside of the context of a frontoparallel 
computer screen in a laboratory, decoding of the 3D environment 
requires additional computation to infer the properties of the world 
that gave rise to the stimulation on the two retinae1,2.

In this work, we show how projective geometry, which maps 
the 3D environment to 2D images on each retina, results in strik-
ingly discontinuous tuning functions for 3D motion in area MT 
of the primate visual cortex. This encoding is starkly different 
in form from tuning functions observed for the reduced case of 
frontoparallel motion. Furthermore, predictions for the percep-
tion and estimation of 3D direction that result from these tuning 
curves show a distinctive dependence of error on 3D direction and 
systematic misperceptions of depth—patterns we then observe in 

human perceptual behavior. Theoretical analysis reveals that a key 
feature of the encoding–decoding computations for recovering 3D 
direction from the slightly different patterns of retinal stimulation 
are the small but ubiquitous differences in monocular sensitivi-
ties observed in cortical neurons (the simplest being ocular domi-
nance), a well-established phenomenon that has until now lacked 
any clear functionality. Together, this framework shows that even 
visual perception, long taken as a model system owing to its appar-
ently simple stages of image formation and transduction, involves 
idiosyncratic encoding that is shaped by geometric projection at the 
earliest stages of stimulation on the sensory epithelium. Visual per-
ception therefore requires corresponding non-canonical decoding 
mechanisms downstream to reconstruct the 3D environment well 
enough to inform perception and guide action.

Results
We developed a computational model of MT responses to motion 
that incorporates the geometric relationship between the world and 
the two retinae, acknowledging the fact that retinal stimulation is 
the result of light bouncing off objects and surfaces in the 3D envi-
ronment and being projected through the pupil onto the back of the 
eyes. This is distinct from earlier work, which often assumed that 
visual patterns presented on flat screens in front of a subject were 
a sufficiently complete proxy for the dynamic patterns of stimula-
tion that fall on the retinae. Our model started with environmental 
representations of object motion, worked through the projective 
geometry on both retinae, and then took into account known 
responses to monocular velocities and binocular combination. The 
model predicted non-canonical tuning forms for single-neuron 
encoding of 3D direction and correspondingly non-homogeneous 
estimation performance when decoding from populations with 
these tuning functions.
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Highly atypical tuning structure for 3D environmental veloci-
ties in the macaque MT. Recent work across electrophysiology 
and functional magnetic resonance imaging (fMRI) has implicated 
the MT in the processing of motion off the frontoparallel plane3–5. 
Here we performed a closer examination of neural recordings in 
the macaque MT to characterize the functional form of tuning for 
3D motion direction (specifically xz directions, Fig. 1a). The black 
points in Fig. 1b show the measured tuning curves (that is, the aver-
age neural response) to the presentation of different 3D directions 
of motion (that is, motion on the xz plane) for six example neu-
rons. The firing rate of these neurons was modulated by changes 
in the 3D direction of motion. Notably, the tuning curves were 
characterized by steep transitions in four locations on the motion 
direction axis (roughly between each pair of adjacent cardinal 
directions: right, away, left, towards) with relatively little change 
in firing everywhere else. Given that the vast majority of tuning 
to simple sensory features takes on a Gaussian form6–8, including 
MT responses to frontoparallel directions of motion, at first glance 
this seems to be a bizarrely ‘terraced’ tuning structure. However, we 
can explain this tuning structure by considering the relationship 
between 3D environmental velocities and the resulting velocities 
that fall on the retina.

Atypical tuning structure for 3D environmental velocities is 
predicted by a model that incorporates environment-to-retina 
geometry. To understand the non-canonical 3D tuning curves, 
we developed a model to encode 3D motion that incorporated the 
projective geometry from the environment onto the two retinae. 
It then applied the canonical log-Gaussian tuning of MT neurons 
to the pair of retinal velocities that correspond to a particular 3D 
direction9,10, and took the linear combination of those monocu-
lar responses. When a particular 3D direction of motion was pre-
sented on the xz plane at a given viewing distance, the geometric 
projection onto the retinae resulted in separate left and right eye 
retinal velocities (Fig. 2a,b). The direction and speed of the reti-
nal velocities were dependent on the environmental velocity of 
the 3D motion as well as its distance to the eyes. Correspondingly, 

any egocentric representation of the 3D direction of motion along 
the xz plane must consider the locations of the eyes, as well as the 
viewing distance.

Here, we used an egocentric coordinate system in which the 
frontoparallel rightward–leftward and 3D towards–away motion 
axes of the xz plane were always anchored to the cardinal axes (0° 
and 180°, and 270° and 90°, respectively). In the first part of the 
paper (including Figs. 1–3), we used a scaling that made the ocu-
lar axes of the left and right eye (that is, motions directly towards 
or away from either eye) orthogonal to one another, placing each 
midway between the 3D and frontoparallel axes. In effect, this also 
divided the space equally into regions with the same or oppositely 
signed motion in the two eyes. We began with this representation 
because it matched that of previous work4,11,12 and because the layout 
made it very easy to examine the relationship between the motion in 
the environment and the motion that falls on the retinae. This coor-
dinate system can be interpreted in environmental terms as having 
an implausibly short effective viewing distance, equal to half the 
average inter-pupillary distance (~3.25 cm in humans and ~1.63 cm 
in macaques, Fig. 2a,b). We emphasize that these conventional axes 
are not based on environmental interpretations, but on the uniform 
sampling of monocular velocity ratios across the two eyes (as pre-
sented in ref. 12). In subsequent sections, we consider more realistic 
viewing distances in the model and human behavior.

In the model, the projected retinal velocity in each eye produced 
a neural response derived directly from the monocular tuning curve 
(Fig. 2c–e, left panels); both of these monocular velocity responses 
could then be replotted as functions of the 3D direction of motion 
(Fig. 2c–e, middle panels). The predicted binocular response was a 
linear combination of the corresponding monocular responses (Fig. 
2c–e, right panels; Online Methods equation (1)). Combining bin-
ocular projective geometry and canonical tuning for retinal stimu-
lation within a simple linear model resulted in tuning curves with 
abrupt discontinuities, characterized by multiple plateaus separated 
by steep cliffs (for example, Fig. 2c–e, right panels). This shape 
deviated substantially from the classic smooth unimodal (that is, 
bell-shaped) tuning observed across almost all sensory features 
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Fig. 1 | MT neurons exhibit an atypical ‘terraced’ tuning structure for environmental velocities in 3D. a, For the purposes of this study, 3D motion refers 
to velocities that fall on the xz plane. This allows us to unwrap the direction of motion onto a linear axis (as is typically done with frontoparallel motion): 
right, away, left, towards, right. b, Average neural response to 3D (xz) direction of motion for six example neurons in the macaque MT4. Each panel depicts 
the average response of a single example neuron to the presentation of different 3D directions of motion (black dots). Predictions of the model proposed 
here are plotted for comparison (purple). Stimuli consisted of binocular presentations of motions consistent with a wide array of directions in the x–z axes 
(fully crossed manipulation of retinal velocities in the two eyes: −10° s−1, −2° s−1, −1° s−1, 1° s−1, 2° s−1 and 10° s−1). This results in motions presented in 
28 unique directions (of varying environmental speeds), with each of the three cardinal directions (right, away, left, towards) repeated at three different 
speeds. These motion stimuli were presented at six different grating orientations (0°, 30°, 60°, 90°, 120° and 150°), all drifting orthogonal to the grating 
orientation. Each stimulus was repeated 25 times. In the examples here, we have plotted the data from the vertically oriented grating orientation. For 
the purposes of our analyses, we included all data except those collected using the horizontally oriented grating, which does not have a proper binocular 
velocity signal. Additional details about these experiments can be found in the original paper4.
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and systems6–8. Although atypical in appearance, the model tuning 
curves bore a striking resemblance to MT responses to binocular 
3D motion stimulation, capturing the qualitative deviations from 
bell-shaped tuning curves4 (for example, purple vs black dots in Fig. 
1, discussed further below).

Given the qualitative success of this model, we further quan-
tified its ability to describe a full electrophysiological data set 
(n = 236 neurons, 4,500 responses collected per neuron) collected 

in the macaque MT4 (Online Methods). We predicted the binocular 
response to the 3D direction of motion by summing the average 
monocular responses to the corresponding retinal velocities (see 
Online Methods equation (1), with cL, cR = 1). Note that this is a 
parameter-free prediction of the neural response to the 3D direction 
of motion. Relying solely on the geometric transformations from 
environment to retinae (and the assumption of interocular additiv-
ity), the model accounted for 76% of the variance in the data (187 of 
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Fig. 2 | An encoding model that incorporates the environment-to-retina geometry of 3D motion predicts atypical structures for binocular 3D motion 
tuning curves. a, Diagram of the projection of 3D motion (confined to the xz plane; middle panel) onto the left eye (blue; left panel) and the right eye (red; 
right panel). The color wheels in the middle panel identify 16 xz directions, and those directions are also marked on the retinal velocity panels for the left 
and right eye. For simplicity, velocities are plotted in a world-motion reference frame (that is, leftward motion in the world is also plotted as leftward in 
the retinal velocity panels). The assumption that the ocular axes are 90° apart results in an effective viewing distance of ipd2

I
, where ipd is the interpupillary 

distance. b, Left and right eye retinal velocities as a function of the direction of 3D motion. These are replotted from the left and right eye panels in a. 
c–e, Each row represents an example model neuron generated from fits to three neurons found in ref. 4. c, A 3D model neuron that exhibits slight ocular 
dominance, leftward preference, and is direction selective. Left: monocular retinal velocity tuning curves for the left and right eye. Middle: monocular 
neural responses as a function of the direction of 3D motion, built from the composition of the functions depicted in b and the left panel. Right: binocular 
3D motion direction tuning curve computed from a weighted linear combination of monocular responses in the middle panel. Data points (circles) trace 
the transformation of a single 3D direction from b through all three panels in c. d, A 3D model neuron that exhibits strong ocular dominance, rightward 
preference, and is direction selective. e, A 3D model neuron that exhibits rightward preference and is less direction selective than the neurons in c and d.
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236 units with 50% or more of the variance explained, median root 
mean-squared error 7.0 spikes per s). Fitting the binocular com-
bination coefficients as free parameters (cL,cR in Online Methods 
equation (1) using least-squares and Monte Carlo cross-validation) 
resulted in a modest improvement, accounting for 82% of the vari-
ance in the data (190 of 236 units with 50% or more of the variance 
explained, median root mean-squared error 4.6 spikes per s).

In the sample tuning curves shown in Fig. 1, the purple curves 
depict the predictions of our model using the fitted combination 
coefficients (purple dots and line). Supplementary Figure 1 shows 
additional example fits for neurons that were well fitted and poorly 
fitted by this model. The von Mises tuning curve (that is, circular 
normal) is the canonical tuning curve used to describe 2D direc-
tion tuning curves in the MT. For comparison to our principled 3D 
model, we also fitted von Mises tuning curves to the middle tem-
poral area data, despite the fact that they lack the plateaus and cliffs 
evident in many of the neural tuning curves. The von Mises model 
explained 80% of the variance in the data (190 of 236 units with 
50% or more of the variance explained, median root mean-squared 
error 4.9 spikes per s). A direct statistical model comparison using 
Akaike information criterion (AIC) and Bayesian information 
criterion (BIC) analyses (Online Methods) further supported the 
conclusion that the 3D encoding model performed better than the 
canonical von Mises (3D model, ΔAIC = 274, 95% confidence inter-
val (CI) 197–348, ΔBIC = 173, 95% CI 173–320; von Mises model, 
ΔAIC = 380, 95% CI 302–482, ΔBIC = 427, 95% CI 345–530; noting 
that, for example, a difference in ΔBIC greater than ten corresponds 
to ‘very strong’ evidence in favor of one model over another). It 
is also interesting to note that the performance of the two models 
was not uniform over the different directions of motion presented. 
This is related to the failure of the von Mises model to capture the 
qualitative shape (cliffs and plateaus) of many of the neurons that 
we observed. In particular, Supplementary Fig. 2 shows that the 

3D model was better than the von Mises model at capturing the 
responses to towards and away motions.

Although the 3D model was quantitatively superior to the 
descriptive bell-shaped fits from a conventional (von Mises) func-
tion, the most important differences between the two models were 
largely qualitative in nature. The 3D encoding model could capture 
the qualitative shapes of many of the neurons that we observed, 
including the abrupt cliffs and the long plateaus in the tuning curves. 
Furthermore, the 3D model directly implemented binocular combi-
nation and suggested explicit mechanisms for the construction of 3D 
motion direction tuning. By contrast, the von Mises tuning model 
was purely descriptive. Therefore the 3D encoding model was a bet-
ter model than the von Mises model quantitatively, qualitatively, and 
mechanistically. In the upcoming sections, we also show that the 3D 
encoding model makes predictions that are consistent with behavior 
but that are not explained by a von Mises tuning model.

Estimating the 3D direction of motion from this atypical tuning 
structure reveals a sufficient but idiosyncratic encoding. The suc-
cess of our model in describing neural responses to 3D motion in 
MT raised the question of whether a population with such idiosyn-
cratic tuning curves could be used to estimate 3D direction (Fig. 3a). 
To investigate this, we built a population based on model fits to the 
neurons recorded in ref. 4, assuming Poisson output noise (Online 
Methods equations (1)–(3)). We simulated population responses to 
motion (5 cm s−1) around the xz plane of 3D directions sampled at 
1° intervals, at a viewing distance of ipd2

I
 (where ipd is interpupillary 

distance), and used a standard maximum log-likelihood decoder to 
estimate the 3D velocity (direction and speed) from the resulting 
population response (for example, ref. 13 and Online Methods equa-
tions (11) and (12)). Despite the unconventional encoding of 3D 
directions, this decoder successfully recovered the 3D direction of 
motion (Fig. 3b, estimates near the unity line).
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Fig. 3 | A 3D model decoder successfully estimates the 3D direction of motion, but the resulting pattern of estimates is distinct from an idealized 
Gaussian (von Mises) model. a, Binocular tuning curves from the computational model for decoding the direction of 3D motion, assuming a viewing 
distance of ipd2

I
, where ipd is interpupillary distance. These 16 example 3D direction tuning curves were chosen because their preferred direction (as 

calculated by the vector average) was closest to tiling 3D direction with 16 evenly spaced values in the xz plane (0°, 22.5°, 45°, …, 337.5°). b, The 
decoder successfully estimates the direction of 3D motion; estimates (dots) fall on the unity line (black line). c, The mean estimation error (purple line) 
and standard deviation (purple cloud) are plotted as a function of 3D direction (n = 36,000, 100 independent estimates per 360 directions tested). 
The standard deviation of the estimates (purple cloud) varies cyclically as a function of the direction of motion presented. This is a consequence of the 
binocular projective geometry. d, For comparison to a–c: idealized population of neurons with Gaussian tuning for 3D motion direction. Here we show 
16 evenly spaced Gaussian tuning curves (with preferred directions: 0°, 22.5°, 45°, …, 337.5°); 236 evenly spaced neurons were used in the simulated 
population. This matches the number of neurons in the recorded population and simulated in the computational model. e, Gaussian decoder successfully 
estimates the direction of 3D motion; estimates (purple dots) fall on the unity line (black line). f, The mean estimation error (purple line) and standard 
deviation of estimates (purple cloud) are plotted as a function of 3D direction (n = 36,000, 100 independent estimates per 360 directions tested). Note 
that the standard deviation of the estimation error does not vary as a function of the motion direction presented (compare to part c).
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The unusual structure of 3D direction encoding has important 
ramifications because the underlying tuning curves do not repre-
sent changes in 3D direction with equal fidelity. This was evident 
in the way in which decoding performance varied as a function of 
the true direction of motion (Fig. 3c), with regions of higher preci-
sion near the steepest portions of the tuning curves. These regions 
corresponded to what we deem the ocular axes, which are the direc-
tions for which the retinal velocities flip sign when the 3D direc-
tion changes. When the 3D direction of an object is very close 
to moving directly towards one of the eyes, small changes in 3D 
direction can correspond to categorical (direction) changes on that 
retina. Because MT neurons respond more strongly to one direc-
tion than another, these direction changes in one eye give rise to the 
steep transitions present in the binocular tuning curves. The result-
ing heterogeneous pattern of precision was notably distinct from 
decoding based on canonical tuning (Fig. 3d–f and Supplementary 
Fig. 3), which predicted consistent estimation error across all values 
of a stimulus feature.

3D direction tuning depends on environmental position. The 
central contribution of our model to the existing understanding of 
motion processing is the incorporation of the environment-to-ret-
ina projection geometry, which resulted in tuning that is expressed 
with respect to the environment. An important consequence of 
this is that the tuning structures are location dependent, a factor 
that has also been ignored in standard ‘retinocentric’ models of the 
MT and direction selectivity. Because our model included view-
ing distance as a parameter, we could simulate and decode at mul-
tiple realistic viewing distances using the same model population, 
Poisson output noise, and a maximum log-likelihood decoder. 
Figure 4 shows the pronounced effect of viewing distance: viewing 
distance changed the retinal projections, which affected the shape 
of individual tuning curves (Fig. 4c compared to Fig. 3a), and 
markedly changed the model decoding performance (Fig. 4d com-
pared to 3b). At a further (and more perceptually realistic) viewing 
distance, the systematic biases and errors of the model estimation 
results revealed two notable features: a coarse-scale ‘X’ pattern, 
indicating errors that are orthogonal to the line of unity (which 
delineates perfectly accurate estimation), and square structures 
in the clouds of points, which reflect finer-scale deviations from 
unity (see refs. 14,15). These patterns can be thought of as depth-
sign errors and a bounded bias away from frontoparallel motion, 
respectively (Fig. 4d). Next, we describe how both of these initially 
perplexing patterns of errors are understandable consequences of 
environmentally referenced decoding that are already evident in 
the behavior of our simple model.

The reason for the rather striking depth-sign error is related to 
the geometric consequences of viewing distance. As viewing dis-
tance increases, retinal velocities decrease, and the angle between 
the visual axes of the two eyes decreases (that is, there is a reduced 
phase shift in the environment-to-retinal velocity mappings between 
the two eyes; compare Fig. 4a at a 67 cm viewing distance to Fig. 2b, 
left panel, at ipd2

I
 or a 3.25 cm viewing distance for a human). For a 

fixed environmental velocity, any single tuning curve is dependent 
on the resulting retinal velocities, and therefore on viewing distance. 
At larger viewing distances, the steep transitions of binocular tuning 
curves shifted closer to the towards and away directions of environ-
mental motion (Fig. 4b,c), resulting in a more symmetrical tuning 
curve (see symmetry line in Fig. 4b). The depth-sign errors were 
due to this increasing symmetry across the neural representation 
in the presence of noise. Note the approximate mirror symmetry in 
Fig. 4c, with lines of symmetry at left (←) and right (→).

In addition to the depth-sign errors, a subtler but equally tell-
ing idiosyncrasy was present in the form of systematic bias of esti-
mates away from purely frontoparallel. This is easiest to see in 
the roughly square cloud of points in the center of Fig. 4d: when 

a leftward direction was presented (middle of the x axis), esti-
mates (y axis) were repulsed from frontoparallel, but could not be 
mistaken for motion containing a rightward component (that is, 
the decoder did not make x-axis sign-flip errors). Thus, the esti-
mates are bounded at the towards and away directions (evident in 
the horizontal bands at the top and bottom edges of that central 
square). Analogous patterns for rightward motion are present in 
the corners.

This ‘frontoparallel repulsion’ was also explainable by our model, 
and was a distinct consequence of the same underlying dependence 
on retinal velocities in the encoding scheme. Figure 5a–d shows 
model estimates at different viewing distances (3.25 cm, 20 cm, 
31 cm, and 67 cm), color-coded by their corresponding environ-
mental speed estimate. The systematic bias for towards or away 
motion at the farthest viewing distance was related to a systematic 
overestimation of the speed of environmental motion: for a perfectly 
frontoparallel estimate to be generated, the monocular velocities 
would have to match exactly. However, given noisy monocular esti-
mates, the resulting estimates of 3D direction will be repulsed from 
frontoparallel, either towards or away, depending on which mon-
ocular channel had noise that yielded a larger or smaller response. 
More detailed examination of the corresponding monocular veloci-
ties revealed that variability of the monocular velocity estimates 
roughly follows Weber’s law, regardless of the viewing distance  
(Fig. 5e–h). However, different viewing distances resulted in a 
different mapping between retinal velocities and environmental 
motion (see Fig. 5i–l and equations (4) and (5), which are depen-
dent on viewing distance, z). Thus, at far viewing distances, the 
same variability plays out as an increased systematic bias for the 
model, resulting in estimates of motion that are too fast and too 
close to the towards and away directions.

3D direction (°)

3D direction (°)

–4

0

4

R
et

in
al

 v
el

oc
ity

 (
° 

s−
1 )

N
eu

ra
l r

es
po

ns
e

3D direction (°)

M
od

el
 e

st
im

at
e 

(°
)

3D direction (°)

N
or

m
al

iz
ed

 
ne

ur
al

 r
es

po
ns

e

Estimate

a b

c d

Left eye

Right eye

Binocular

Fig. 4 | Model estimates of the direction of 3D motion change with 
viewing distance, resulting in surprising model errors at far viewing 
distances. a, At a larger (67 cm) viewing distance, the retinal velocities 
are smaller in magnitude, and the difference between the left and right eye 
retinal velocities is markedly reduced. b, The effect of increased viewing 
distance on individual tuning curves is a convergence of steep transitions 
on the towards or away motion directions. This results in a relatively 
symmetrical function except close to the towards and away directions. 
This symmetry is present across the whole population (because it is a 
consequence of binocular projective geometry (for example, c)), and it 
leads to the unusual model errors evident in d. c, Binocular tuning curves 
for 3D motion direction at a viewing distance of 67 cm. These 16 3D 
direction tuning curves are the same example units as those shown in Fig. 
3a. d, Model estimates of the direction of 3D motion for a viewing distance 
of 67 cm (n = 15 per 72 directions tested). A pattern of biases and depth-
sign errors emerges, forming an ‘X’ pattern of results.
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Although this explication of the model builds intuition for these 
errors in the performance of the decoder, it may seem unreasonable 
to predict that human observers would exhibit these patterns of per-
formance and particularly that they would make the same depth-sign 
and frontoparallel-repulsion errors as this model decoder. However, 
existing psychophysical results have established that humans do 
make depth-sign errors16, and in the next section we not only con-
firm the existence of both depth-sign and frontoparallel-repulsion 
errors, but also show that these perceptual distortions emerge and 
obey the quantitative functional dependence on position in the envi-
ronment (that is, viewing distance) implied by our model.

Human performance on a 3D motion direction estimation task 
exhibits the signatures of the proposed environment-to-retina 
model of 3D motion tuning. We tested whether human perception 
exhibits signatures of the environment-to-retina encoding–decod-
ing model: performance in the estimation of 3D direction should be 
a function of both the direction of motion and viewing distance. We 
designed a perceptual experiment to examine human estimation of 
3D direction of motion at several viewing distances. Observers esti-
mated the 3D direction of motion of random dots within a spheri-
cal volume (5° in frontoparallel diameter, at 5% contrast, rendered 
with looming and expansion cues, motion direction at 0°, 5°, …, or 

355° on the xz plane, with a motion speed of 5 cm s−1) at three dif-
ferent viewing distances (20 cm, 31 cm, or 67 cm). These 3D motion 
volumes are analogous to the 2D motion apertures found in classic 
studies of 2D motion. Motion was presented for 1 s and observers 
reported their estimate of the 3D direction of motion of the dots 
using a knob to adjust the angle of a stereoscopically rendered indi-
cator on the screen. Supplementary Videos 1 and 2 provide high-
contrast examples of the motion stimuli.

Figure 6 shows the combined estimation performance for three 
observers at three different viewing distances and model perfor-
mance at the same three viewing distances for comparison. Human 
observers exhibited depth-sign errors and biases for towards or away 
motion that fully emerge as a function of viewing distance (perfor-
mance of individual subjects is shown in Supplementary Fig. 4). 
Figure 6g illustrates the increase in depth-sign errors with increased 
viewing distance and compares performance to the predictions of 
the 3D model and the von Mises model. Although there are almost 
no depth-sign errors predicted by the von Mises model, the 3D 
model predictions increase in step with the psychophysical results.

Subtle tuning differences across the two eyes enable the 
towards-versus-away aspect of decoding for 3D direction. By 
separately manipulating parameters of the simulated population 
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Fig. 5 | Systematic biases for towards or away motion emerge with increased viewing distances. a–d, Model performance for the estimation of the 
direction of motion for a single environmental speed (5 cm s−1) at four different viewing distances (3.25 cm, 20 cm, 31 cm and 67 cm). Colors indicate 
model estimates of environmental speed. The unity line (black) marks the presented directions of motion. e–h, The same model and estimates as a–d, 
but plotted as a function of the corresponding left and right eye retinal velocities. The thick black line represents the presented motion. The dashed lines 
indicate the axes of towards or away motion and left or right motion. From this representation, it is evident that the variability around the retinal velocities 
is similarly shaped across viewing distances but that the transformation to the environmental velocity results in systematic differences in model estimation 
performance for environmental velocities at different viewing distances. i–l, The mapping from retinal velocities to environmental velocities at different 
viewing distances. The thick black line represents the presented motion. A, away; L, left; R, right; T, towards.
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(Online Methods equations (1)–(3)), we were able to examine 
which aspects of neural tuning in MT neurons affect the estima-
tion of the 3D direction of motion. For example, a population with 
identical monocular tuning parameters (that is, the same speed 
preference, tuning bandwidth, response amplitude, and baseline 
firing rate in the two eyes), correctly identified the x (frontopar-
allel) component of 3D motion. However, in the absence of any 
implicit eye of origin signatures playing out in such parameters, 
this ‘equal-monocular’ encoding could not recover the direction 
for the depth component above chance levels because there was 
no differentiating information for towards-versus-away motion 
components (Fig. 7b).

However, merely incorporating subtly differential monocular 
tuning (at the levels measured in ref. 4) revealed that small, seem-
ingly trivial differences in response amplitude, tuning bandwidth, 

or speed preference between the two eyes are each, in principle, 
sufficient to represent the 3D direction of motion (Fig. 7c–e, 
respectively, and Fig. 7a for comparison). Differences in untuned 
components (such as the baseline firing rate from the two monocu-
lar response components) did not provide differential towards or 
away information (Fig. 7f). Therefore, small and seemingly innoc-
uous mismatches between left and right eye tuning may play a key 
role in encoding the 3D environment. In particular, we note that 
small differences in response amplitude are more commonly called 
‘ocular dominance’, a phenomenon that has been well-documented 
in the visual cortex17,18, but has rarely been posited as a scheme 
for carrying information19. This theoretical finding indicates that 
these subtle ocular imbalances may have an important role in 
visual processing.

Discussion
We have introduced a framework for making inferences about envi-
ronmental properties, given knowledge of the neural sensitivity to 
features of retinal stimulation. Specifically, we examined tuning 
for 3D motion in the primate MT, and observed atypical tuning 
structures for 3D motion. We found that an encoding model that 
combines the relationship between the environment and the retina 
with the known retinal encoding of 2D motion explains this strik-
ingly atypical tuning structure. This encoding model was then 
shown to be sufficient for estimating the 3D direction of motion. 
Furthermore, a decoding analysis predicted 3D motion direction 
estimation performance that varies as a function of the direction of 
motion and viewing distance, which we showed is consistent with 
human perceptual judgements and is in stark contrast with default 
(Gaussian or von Mises) tuning models that have homogeneous 
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Fig. 6 | Human performance on a 3D motion direction estimation task 
matches model observer performance. a–c, Results from a human 
psychophysics experiment. Three observers were shown dot motion 
clouds moving in one direction and asked to estimate the direction of 3D 
motion. a, 3D motion direction estimation performance combined for three 
human observers at a 20 cm viewing distance. Each dot represents an 
estimate from a single trial (n = 15 per 72 directions tested). Data points 
are rendered semi-transparently to make the density of estimates visible. 
b, 3D motion direction estimation performance combined for three human 
observers at a 31 cm viewing distance. c, 3D motion direction estimation 
performance combined for three human observers at a 67 cm viewing 
distance. d–f, Performance of the 3D model in estimating the direction of 
motion in the same conditions as the human observers in a–c. Note that 
with the increased viewing distance there is an increase in the number of 
depth-sign errors and a bias away from frontoparallel motion for both the 
model and the human observers. g, The percentage of depth-sign errors 
as a function of viewing distance for the two models and three human 
observers, demonstrating that there is a categorical difference between 
the predictions made by the 3D model and the von Mises model. Human 
observers are clearly better matched by the 3D model.
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Fig. 7 | Subtle tuning differences across the two eyes enable the towards-
versus-away aspect of decoding for the direction of 3D motion. Each 
lettered panel shows the performance of a decoder (top), based on a 
particular simulated neural population (bottom) at a simulated viewing 
distance of ipd2

I
 (as in Fig. 3), given a particular set of tuning characteristics: 

the original tuning measured in this paper (slightly different across the two 
eyes for all parameters) (a); equal monocular inputs from the two eyes 
(b); tuning that differs across the two eyes only in response amplitude (c); 
tuning that differs only in bandwidth (d); tuning that differs only in speed 
preference (e); or tuning that differs only in baseline firing rate (f).
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sensitivity across all 3D directions. Therefore, the predictions made 
by extending sensory encoding and decoding to incorporate the 
geometry of the spatiotemporal environment naturally account for 
what are, at first glance, rather odd aspects of both neural tuning 
curves and human perception.

Previous studies in the perceptual literature have reported 
the frontoparallel bias and depth-sign errors that we observe to 
be prevalent at longer viewing distances16,20. Bayesian observer 
models that rely on slow speed priors have provided plausible 
explanations for the set of biases and errors observed in human 
perceptual experiments14,15,21. The use of binocular velocities for 
the discrimination or estimation of the 3D direction of motion 
was also proposed by Beverley and Regan22, with supporting psy-
chophysical experiments that tested the discrimination of the 3D 
direction of motion and demonstrated increased direction sensi-
tivity in line with the location of the two eyes. Our model provides 
a more complete explanation in three important ways: the model 
is built on the tuning structure of a known neural population, 
the model does not need to invoke a prior, and the model makes 
explicit the location-dependent nature of primate estimation of 
the 3D direction of motion (that is, how performance changes 
with viewing distance).

Previous work in the electrophysiological literature established 
that MT neurons with some 3D tuning (as defined by a preferred 
direction calculated using a vector average of responses) were more 
likely to exhibit non-linear binocular summation4. They concluded 
that these non-linearities were probably critical for sensitivity to 3D 
motion. Despite the fact that the binocular combination included 
in our model is purely linear and does not take into account these 
non-linearities, our model accounts for more than half of the vari-
ance in most neurons. We found that some neurons are not well 
fit by our model. This is at least partly due to non-linearities in 
binocular combination, which probably sharpen sensitivity to 3D 
motion. However, the theoretical exercise described here reveals 
fundamental contributions of binocular projection geometry and 
ocular imbalance that give rise to the non-canonical tuning struc-
tures observed in MT.

The model of 3D motion tuning proposed here examines how 
3D motion information can be read out from the different retinal 
velocities that fall on the two eyes. The field has named this bin-
ocular information about 3D motion interocular velocity differ-
ences23,24. Given that the model presented here relies on binocular 
summation and ocular tuning imbalances across the two eyes, the 
term interocular velocity differences is a bit of a misnomer and 
potentially confusing (which is why we have avoided mentioning it 
previously). The mechanism representing this type of information 
does not engage in any differencing per se, although it does rely on 
the fact that the velocities are different.

The work presented here provides a phenomenologically com-
pelling model of the representation of 3D direction, supported by 
both electrophysiological and psychophysical evidence. However, 
future work will need to examine more directly the relationship 
between physiology and perception in awake behaving primates 
using tools such as micro-stimulation (for example, ref. 25). Such 
experiments will also provide an important opportunity to further 
characterize the monocular and binocular tuning characteristics of 
neurons, as well as potential dependencies on viewing distance, to 
test and refine the model proposed here.

In conclusion, our findings emphasize the importance of recog-
nizing the ultimate need of the nervous system to infer the proper-
ties of the environment to guide behavior. Such inference is based 
on sensory information that is fundamentally constrained by the 
geometric relationship between the environment and the sen-
sory organ. We considered the case of the 3D direction of motion 
as an example, demonstrating that a geometrically constrained 
encoding model for the 3D direction of motion is consistent with 

electrophysiological recordings of neurons in MT and human per-
formance on direction estimation tasks. Furthermore, we found 
evidence that small differences in tuning across the two eyes can 
support the estimation of the 3D direction of motion. The geo-
metric framework presented here can be applied to other visual 
features; for example, slanted and tilted patterns project differential 
patterns of orientation on the two retina, which shape the environ-
mental meaning of canonical orientation tuning functions. Thus, a 
large number of important cortical encoding modules may not be 
implemented by banks of units with bell-shaped tuning when the 
decoding of environmental properties (rather than retinal image 
properties) is required, as is the case for visually guided behaviors 
in the natural world.
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Methods
Electrophysiological data. Several analyses performed in this paper rely on an 
electrophysiological data set (n = 236) collected in MT of two adult male macaques 
(Macaca fascicularis, aged 3 years and 4 years) under anesthesia in ref. 4. These 
recordings include the neural responses to 3D motion in 28 directions on the xz 
plane (with varying environmental speeds, fully crossed manipulation of retinal 
velocities in the two eyes: −10° s−1, −2° s−1, −1° s−1, 1° s−1, 2° s−1, and 10° s−1), as 
well as the responses to the corresponding monocular velocities. The stimulus was 
constructed using drifting gratings at six different orientations (0°, 30°, 60°, 90°, 
120°, and 150°), all drifting orthogonal to grating orientation. Each stimulus was 
repeated 25 times. For the purposes of our analyses we included all data except 
those collected using the horizontally oriented grating, which does not have a 
proper binocular velocity signal. Additional details about these experiments can be 
found in the original paper4.

Computational model. Encoding. Here we describe the single-neuron encoding 
model used to generate the model predictions for responses to the 3D direction of 
motion (for example, Figs. 3–7). Here 3D motion refers to motion on the xz plane 
(Fig. 1a). A velocity on this plane is specified by (θ,m), where θ is the xz direction 
(°) and m is the magnitude of the motion (cm s−1). The binocular response function 
for 3D motion, fB(θ,m) (for example, Fig. 2c–e, right panel), can be written as a 
weighted combination of the monocular responses due to the retinal velocities that 
fall onto each of the eyes:

fBðθ;mÞ ¼ cL  fLðθ;mÞ þ cR  fRðθ;mÞ ð1Þ

where fL(θ,m) and fR(θ,m) are the monocular responses (spike rate, for example, Fig. 
2c–e) to the corresponding left and right eye retinal velocities (Fig. 2b); cL and cR are 
the coefficients for linear combination. These combination coefficients allow for 
suppression or amplification of one or both eyes during the binocular response.

Monocular velocity tuning curves in MT are well fitted by log-Gaussian 
functions10 and we therefore parameterized the monocular response functions 
(fL(θ,m), fR(θ,m)) using log-Gaussian curves (for example, Fig. 2c–e). The motion 
confined to the xz plane gives rise to monocular velocities to the right or left at 
different speeds. Because MT neurons exhibit diversity in their direction selectivity, 
the log-Gaussian function must be simultaneously fitted to both directions with 
coefficients to modulate the relative amplitude of the neural response:

fLðθ;mÞ ¼
aLþ

dθLðθ;mÞσl e
�ðlog dθL ðθ;mÞ�μl Þ2

2σ2
l þ bL dθLðθ;mÞ≥0

aL�
jdθLðθ;mÞjσl e

�ðlog jdθL ðθ;mÞj�μl Þ2

2σ2
l þ bL dθLðθ;mÞ<0

8
>><
>>:

ð2Þ

fRðθ;mÞ ¼
aRþ

dθRðθ;mÞσr e
�ðlog dθR ðθ;mÞ�μr Þ2

2σ2r þ bR dθRðθ;mÞ≥0

aR�
jdθRðθ;mÞjσr e

�ðlog jdθR ðθ;mÞj�μr Þ2
2σ2r þ bR dθRðθ;mÞ<0

8
>><
>>:

ð3Þ

where μL, σL, μR, and σR are the parameters of the log-Gaussian function; aL+, aL−, 
aR+, and aR− are the coefficients modulating the relative amplitude of the neural 
response; bL and bR are the baseline firing rates; and dθL(θ,m) and dθR(θ,m) are 
functions that give the retinal velocities for the left and right eyes, respectively (see 
below, see also Fig. 2a), given the xz velocity (θ,m).

dθLðθ;mÞ ¼ cosðθÞ m  z � sinðθÞ m  ðx þ ipd
2 Þ

ðx þ ipd
2 Þ

2 þ z2
ð4Þ

dθRðθ;mÞ ¼ cosðθÞ m  z � sinðθÞ m  ðx � ipd
2 Þ

ðx � ipd
2 Þ

2 þ z2
ð5Þ

where (x, z) is the location of the motion (cm) and ipd is the inter-pupillary 
distance (6.5 cm in humans and 3.25 in macaques).

The equation for the retinal velocities (dθL,dθR), given an environmental 
velocity (θ,m), comes from taking the derivative on the angular relationship 
between the eye in question and the location of the motion (for schematic, see 
Supplementary Fig. 5):

tanðθrÞ ¼ � z

x � ipd
2

ð6Þ

θr ¼ tan�1 � z

x � ipd
2

 !
ð7Þ

To find the velocity for the right eye, take the derivative (that is, dθr; note that 
d
dx tan

�1ðf ðxÞÞ ¼ f 0ðxÞ
1þf ðxÞ2

I

):

dθr ¼
1

1þ z
x�ipd

2

� �2  z  dx  ðx � ipd
2
Þ�2 � dz  ðx � ipd

2
Þ�1

� �

ð8Þ

dθr ¼
ðx � ipd

2 Þ
2

ðx � ipd
2 Þ

2 þ z2
 z  dx

ðx � ipd
2 Þ

2
� dz

ðx � ipd
2 Þ

 !
ð9Þ

dθr ¼
z  dx � dz  ðx � ipd

2 Þ
ðx � ipd

2 Þ
2 þ z2

ð10Þ

Substituting dx and dz for cos(θ) × m and sin(θ) × m, respectively, gives equation (5) 
above. The derivation for dθL follows the same logic except that the location of the 
eye has changed (that is, ½x � ipd

2  ! ½x þ ipd
2 

I
).

Decoding. The estimation of the 3D direction of motion was performed by finding 
the xz velocity (θ,m) associated with the maximum log-likelihood value, given the 
assumption of independent Poisson noise on the 3D binocular tuning curve:

logLðθ;mÞ ¼ log
YN

i¼1

pðrijθ;mÞ
 !

¼
XN

i¼1

log
fBi ðθ;mÞri

ri!
e�fBi ðθÞ

 
ð11Þ

¼
XN

i¼1

logðfBi ðθ;mÞÞri �
XN

i¼1

fBi ðθ;mÞ �
XN

i¼1

logðri!Þ ð12Þ

where r is the population response, a vector composed of the spike count for N 
neurons, and fB are the binocular tuning curves for 3D motion (see ref. 13). The 
direction and magnitude of the motion were jointly estimated by maximizing the 
log-likelihood: argmaxθ,m logL(θ,m).

von Mises model. Here we describe a double von Mises encoding model for single 
neurons. This model produces classical bell-shaped tuning for 3D direction and 
allows for two peaks of different amplitudes separated by 180°. This is the model 
used in the comparison in Fig. 3 and Supplementary Figs. 1–3. The response 
function (fvon) is given by the following equation:

fvonðθÞ ¼ a1
eK ´ cosðθ�μÞ

2π ´ I0ðKÞ
þ a2

eK ´ cosðθ�μ�πÞ

2π ´ I0ðKÞ
þ b ð13Þ

where μ is the preferred direction of the neuron, K is a measure of concentration 
(analogous to 1σ2

I
), b is the baseline firing rate, and a1, a2 control the relative 

amplitudes of the preferred and anti-preferred directions (allowing for the type of 
mixed direction selectivity typically reported in MT tuning for 2D (xy) direction of 
motion).

Model comparison. The AIC and BIC were calculated for fits of both the von Mises 
and 3D encoding model to the binocular response data from ref. 4. AIC and BIC 
are designed for comparisons of models with differing numbers of parameters. 
The 3D model is a two-parameter model given by equation (1), where cL,cR are 
the parameters and fL(θ,m), fR(θ,m) are given by the monocular data. The von 
Mises model is the five-parameter model shown in equation (13), but is actually a 
25-parameter model because a different five parameters must be learned for each 
of the five grating orientations used in the analysis. We performed Monte Carlo 
cross-validation (n = 50) to estimate AIC and BIC for each neuron and then took 
the mean across all neurons to calculate the population AIC and BIC for both 
models.

Psychophysical methods. Observers. Data were collected from three 
psychophysical observers (including two of the authors and one naive subject, aged 
20–28 years, one female and two male). Each of the observers had good stereopsis 
and normal or corrected-to-normal vision. All observers participated with written 
informed consent and were treated according to the principles set forth in the 
Declaration of Helsinki of the World Medical Association. All procedures were 
approved by the University of Texas at Austin Institutional Review Board.

Apparatus. Stimuli were presented stereoscopically using a ProPixx 3D projector 
(ProPixx, 120 Hz per eye, 74.5 cm × 132.5 cm) and a Screen Tech ST-PRO-DCF 
black acrylic glass screen (Screen Tech). We designed a rail system for mounting 
both the screen and projector that can be easily adjusted to viewing distances 
from 20 cm to 120 cm without moving the subject. Supplementary Fig. 6 shows a 
schematic of this system.

Stimulus. The stimuli were fixed spherical dot motion volumes analogous 
to the dot motion apertures in the classic (frontoparallel) motion literature. 
Supplementary Videos 1 and 2 show high-contrast examples of this stimulus. 
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Supplementary Video 1 can be free-fused and is a high-contrast version of the 
stimulus shown to subjects during our experiments. Supplementary Video 2 is a 
2D video rendered with shading on the dots to give a stronger sense of the depth 
percept. Both videos show eight motion epochs (0°, 45°, 90°, 135°, 180°, 225°, 270°, 
and 315°). Spherical motion volumes were 5° (frontoparallel, 1.78 cm, 2.75 cm, 
and 5.95 cm at the three viewing distances) in diameter at 5° in eccentricity left or 
right from fixation. To avoid performing experiments in a stereomotion scotoma26, 
stereomotion tests were performed at both locations and the stimulus was placed 
in the location with highest performance. Dots within the spherical volume were at 
5% contrast (half with luminance above the background luminance and half with 
luminance below the background luminance), moving at one of three speeds (5 cm 
s−1, 7.75 cm s−1, or 16.75 cm s−1), in one of 72 directions (0°, 5°, 10°, …, 350°, 355°), 
at one of three viewing distances (20 cm, 31 cm, or 67 cm), rendered with looming 
and expansion cues.

Procedure. Each trial consisted of a motion epoch lasting 1 s. Subjects reported 
the direction of motion of the dots using a knob to adjust the angle of an indicator 
on the screen. The indicator was rendered stereoscopically and consisted of a 
vector arrow that could be oriented radially around a ring on the xz plane. This 
indicator was presented slightly below the location of fixation from the motion 
epochs. An example of the motion indicator used during the experiment can be 
seen in Supplementary Video 2. The figure below the motion cloud indicates the 
direction of motion of the dot cloud. The experiment was completed in blocks. 
Each block consisted of 72 trials at a single viewing distance, with pseudorandomly 
interleaved trials of different speeds and directions (the fastest speed, 16.75 cm s−1, 
was presented at only the farthest viewing distance). Each condition (direction, 
speed, viewing distance combination) was repeated five times. The experiment was 
conducted in 35 blocks for a total of 2,520 trials.

Statistics. No statistical methods were used to predetermine sample sizes but 
our sample sizes were similar to those reported in previous publications16,20. The 
psychophysical experiment was completed in blocks. Within blocks, trials with 
different speeds and directions were interleaved. Blocks were performed in a 
random order. Between blocks the screen was set at the appropriate distance for the 
upcoming trials. Because participants were aware that the screen was at different 
viewing distances, data collection and analysis was not performed blind to the 
conditions of the experiments. In this paper we present the data from the 5 cm s−1 
trials, since that speed was presented at all three viewing distances. Otherwise, no 
data were excluded. We did not explicitly test for normality.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data and code availability
The modeling code and simulations, and the human psychophysical 
data and analysis, are available here: https://github.com/kbonnen/
BinocularViewing3dMotion.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Software and code
Policy information about availability of computer code

Data collection All visual experiments were performed using custom routines that depend on MatLab (2016b) and Psychtoolbox v3.0.12.

Data analysis All data analysis and modeling was performed using custom routines that depended on MatLab (2016b) and Psychtoolbox v3.0.12.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study is quantitative including experimental data and simulations.

Research sample 3 subjects (2 male, 1 female), ranging from 20-28 years of age, with normal or corrected-to-normal vision.  This included one subject who 
was naive to the purpose and hypotheses of the study.

Sampling strategy No statistical methods were used to pre-determine sample size, but our sample sizes are similar to those reported in previous 
publications (refs 15, 20).

Data collection Data collection was performed using a computer and adjustable knob which subjects manipulated to indicate their response.  
Participants performed the experiment in blocks.  For the first 3 blocks the researcher was present to instruct the participant and answer 
questions.  For the remaining 69 blocks the participant collected data on their own.  The researcher was not blind to the study 
hypothesis.  Of the three participants, only the  naive participant (S3) was completely blind the study hypothesis.

Timing November 2017 - May 2018

Data exclusions No data were excluded from the analyses.

Non-participation No participants dropped out or declined participation

Randomization Participants were not allocated into experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Extracellular recordings were performed in two anesthetized, adult male macaque monkeys (macaca fascicularis; 3 and 4 years 
of age).

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight For the electrophysiological data we reanalyzed in this paper, all procedures were approved by the Institutional Animal Care and 
Use Committee of the Albert Einstein College of Medicine at Yeshiva University and were in compliance with the guidelines set 
forth in the National Institutes of Health Guide for the care and use of laboratory animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics 3 subjects (2 male, 1 female), ranging from 22-29 years of age, with normal or corrected-to-normal vision.

Recruitment Participants were existing lab members, including 1 naive subject.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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